
1 
  

21st Annual CFD Symposium, August 8-9, 2019, Bangalore.  
 
 
 

 
 
 
 

GPU Accelerated Mesh free Solvers for Compressible Flows  
 

Nischay Ram mamidi1, Kumar Prasun2, Srikanth C.S.3and Anil Nemili4 Department of Mathematics, BITS-Pilani, Hyderabad Campus, Hyderabad, 500078 
SM Deshpande5 

Engineering Mechanism Unit, JNCASR, Bengaluru, 560064 
 

 
 
Keywords: Python, Julia, FORTRAN, GPUs, CUDA, 
LSKUM, Mesh free methods. 

 
INTRODUCTION        The Least Squares Kinetic Upwind Method (LSKUM) [1] 
is a mesh free solver for the numerical solution of Euler and 
Navier-Stokes equations of the compressible fluid flows. Over 
the years, LSKUM based mesh free solvers developed at 
Defense Research and Development Laboratory (DRDL) and 
National Aerospace Laboratories (NAL) have been 
continuously used to compute flows around a wide variety of 
configurations. 
 

The mesh free solvers in these Laboratories are written in 
traditional programming languages like C, C++ and 
FORTRAN. Porting these legacy codes to HPC platforms with 
rapidly evolving hardware is challenging as the developers 
need to tune their codes frequently. One way to circumvent this 
problem is to employ modern languages such as Python or 
Julia. These languages are known to be architecture 
independent with an added advantage of easy code 
maintenance and readability. Furthermore, Julia is designed for 
high performance computing of numerically intensive 
algorithms. Recently, a hybrid parallel CFD solver called 
PyFR [2] has been developed in Python. This code has been 
successfully tested on massively parallel modern hardware 
platforms scaling to Petaflops. In other works, a parallel code, 
Celeste [3], written in Julia is used to perform Petascale 
operations for astronomical applications. 

 
       The long term aim is to develop LSKUM based Python 
and Julia mesh free solvers that can be run on hybrid platforms 
such as GPGPUs and CPUs+GPUs. As a first step towards this 
objective, in the present work, an attempt has been made to 
develop both serial and GPU accelerated mesh free solvers for 
two-dimensional flows. The computational efficiency of these 
solvers is compared with equivalent FORTRAN based serial 
and GPU solvers. Furthermore, analysis of several 
performance metrics such as Streaming Multiprocessor (SM) 
utilization and achieved occupancy gives very useful 
information for future development.   
       To measure the performance of mesh free solvers, we 
adopt a cost metric called the Rate of Data Processing (RDP). 
The RDP of a mesh free code can be defined as the total wall 
clock time in seconds per iteration per point. The RDP values 
based on a single core CPU calculations are listed in Table 2. 
Compared to the FORTRAN code, the performance of the  
 

 
 
python code is observed to be very poor as its RDP values are 
larger  
 NUMERICAL RESULTS 
        In this section, we present numerical results to assess the 
computational efficiency of the Python, Julia and FORTRAN 
based GPU accelerated mesh free solvers. The test case under 
investigation is the in viscid fluid flow simulation around 
NACA 0012 airfoil at Mach number M = 0.85 and angle of 
attack AoA= 1o. For the benchmarks, six levels of uniformly 
refined point distributions are used. The coarsest distribution 
consists of 9, 600 points, while the finest distribution consists 
of 98, 30, 400 points. Note that further point refinement is not 
pursued as the desired memory requirements exceed the 
available GPU resources. All computations are performed 
with double precision on a Linux workstation, whose 
configuration details are presented in Table 1. 

          CPU          GPU 
Model Intel Xeon     E5 − 2698 v4 Nvidia Quadro M5000 

Cores       40 (20 × 2) 2048 
Core Frequency          2.20 GHz 1.038 GHz 

Global Memory   128 GB 8 GB 
L2 Cache        5 MB 2 MB 

 
TABLE 1:  CONFIGURATION OF THE WORKSTATION 
USED TO PERFORMSIMULATIONS.        
       To measure the performance of mesh free solvers, we 
adopt a cost metric called the Rate of Data Processing (RDP). 
The RDP of a mesh free code can be defined as the total wall 
clock time in seconds per iteration per point. The RDP values 
based on a single core CPU calculations are listed in Table 2. 
Compared to the FORTRAN code, the performance of the 
Python code is observed to be very poor as its RDP values are 
larger by an order of O 102. This behavior is anticipated as pure 
Python is an interpreted and dynamically typed language while 
FORTRAN is a compiled and statically typed language. On the 
other hand, while Julia is also a dynamically typed language, 
its compiler can statically type functions through multiple 
dispatch. Due to this, the RDP values based on Julia are better 
than Python but its performance is still slower than 
FORTRAN. 
 
 
 



2 
  

 

 
TABLE 2: COMPARISON OF THE RDP VALUES FOR A 
SINGLE CORE CPU   COMPUTATION.   
       It is well-known that the overall performance of a GPU 
accelerated code depends on the number of threads employed 
per block. To find the optimal number of threads for the present 
algorithm and the hardware, we perform numerical 
experiments with 8, 16, 32, 64, 128 and 256 threads per block. 
Note that with 512 and 1024 threads, the simulations crashed 
due to lack of sufficient thread memory. For the Python and 
Fortran GPU codes, the optimal choice for the number of 
threads on all levels of point distribution is foundtobe32. On 
the other hand, for the Julia GPU code, the optimal number of 
threads is observed to be 128.  
 
        Table 3 shows a comparison of RDP values based on the 
GPU accelerated mesh free codes. From these values, we can 
observe a very significant improvement in Python GPU code 
performance over its serial version. In fact, on medium levels 
of point distribution, the Python GPU code exhibits superior 
performance over the FORTRAN version. Perhaps, this could 
be due to the efficient utilization of streaming multiprocessors 
(SM) by the Python GPU code. On the other hand, the 
performance of Julia GPU code is observed to be slower than 
both Python and FORTRAN. Perhaps, this slowdown can be 
due to the current implementation which requires a larger data 
structure. Furthermore, Julia CUDA libraries are relatively 
newer and lack many features. 
         

 

  
TABLE 3: COMPARISON OF THE RDP VALUES BASED ON 
THE GPU ACCELERATED MESHFREE CODES. 

In order to assess the overall performance enhancement 
due to GPU computing, we define the speedup as the ratio of 
the RDP based on a single core CPU simulation to the RDP 
obtained using the GPU accelerated code with optimal number 
of threads per block. Table 4 shows the relative speedup 
achieved by the GPU codes. It can be observed that continuous 
point refinement enhanced the utilization of GPU computing 
power and thus increased the speedup. In the case of Python, 
the speedup has reached saturation on level 4 point 
distribution, while for FORTRAN the speedup got saturated on 
level 5 point distribution. Beyond this point, the speedup 

decreases as the computational effort on the finest distribution 
exceeds the available GPU resources. Note that a reasonable 
explanation for massive speedup achieved by the Python GPU 
code is due to a very poor performance of its serial code.  

 

 TABLE 4: RELATIVE SPEEDUP OF GPU ACCELERATED 
CODES OVER A SINGLE CORE CPU COMPUTATION.  
OUTLOOK OF THE FULL PAPER 
 
In the full paper, the following aspects will be improve, added • Details pertaining to the development of Mesh free 

GPU solvers. 
• Performance metrics of the kernels invoked in GPU 

codes. 
• RDP values based on optimized GPU solvers. 
• References will be updated.  

 
REFERENCES  [1] A.K. Ghosh and S.M. Deshpande. Least squares kinetic 

upwind method for in viscid compressible flows. AIAA 
paper 1995-1735, 1995. 
 [2] F.D.Witherden, A.M.Farrington, and P.E.Vincent. PyFR: 
Anopensource frame work for solving advection–
diffusion type problems on streaming architectures using 
the flux reconstruction approach. Computer Physics. 
Communication on s, 185(11):3028–3040, Nov 2014. 

 
[3] J. Regier, K. Pamnany, K. Fischer, A. Noack, M. Lam, J. 

Revels, S. Howard, R. Giordano, D. Schlegel, J. 
McAuliffe, R. Thomas, and Prabhat. Cataloging the 
visible universe through bayesian inference at petascale. 
In 2018 IEEE International Parallel and Distributed 
Processing Symposium (IPDPS), pages 44–53, May 2018.  

 

Number of points Python serial 
code 

Julia serial 
code 

Fortran serial code 
160 × 60 = 9600 10.3562 × 10−4 5.4479 × 10−5      8.5423 × 10−6 
320 × 120 = 38400 9.8451 × 10−4 6.0964 × 10−5      8.0099 × 10−6 
640 × 240 = 153600 9.7971 × 10−4 7.9173 × 10−5      7.2401 × 10−6 
1280 × 480 = 614400 9.4958 × 10−4 14.3439 ×10−5      5.9362 ×10−6 
2560 × 960=2457600 8.3596 × 10−4 27.8621 ×10−5      4.8165 ×10−6 
5120 × 1920 = 
9830400 

6.1861 × 10−4 31.8860 ×10−5 2.7674×10−6 

Number of 
points 

Python GPU 
code 

Julia GPU 
code 

Fortran GPU 
code 

9600 10.9781 × 10−7 12.1875 × 10−7 8.9708 × 10−7 
38400 4.4550 × 10−7 11.1458 × 10−7 6.7234 × 10−7 
153600 2.9135 × 10−7 10.7617 × 10−7 5.0638 × 10−7 
614400 2.3671 × 10−7 10.7617 × 10−7 3.6609 × 10−7 
2457600 2.1370 × 10−7 11.1108 × 10−7 2.5656 × 10−7 
9830400 2.0654 × 10−7 9.0841 × 10−7 1.5623 × 10−7 

Number of 
points 

Python GPU code Julia GPU code Fortran GPU 
code 

9600 943 44.7 9.5 
38400 2210 54.7 11.9 
153600 3363 73.6 14.3 
614400 4012 133.3 16.2 
2457600 3912 250.8 18.8 
9830400 2995 351.0 17.7 


